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ACOUSTIC PROPAGATION IN A WEDGE-SHAPED OCEAN WITH
PERFECTLY REFLECTING BOUNDARIES

INTRODUCTION

The ocean overlying the continental slope or a sloping beach is most simply represented as a
wedge-shaped domain with perfectly reflecting (pressure-release) boundaries. This model is, of course,
inadequate in that it cannot account for certain phenomena, such as acoustic penetration of the bottom,
which are encountered in the real ocean. On the other hand, the wave equation for the perfect wedge
is separable, and the analysis of the acoustic field due to a point source within the domain is tractable.
By way of contrast, the wave equation for the penetrable wedge is not separable, a fact which inevitably
complicates the analysis of the acoustic field in this case. Here we shall confine our attention to the
simpler situation where the boundaries are perfect reflectors. Certain physical attributes of the perfect
wedge are discussed, most notably the fact that the radiation field is constrained to form modal beams
as a result of the multiple acoustic interactions with the boundaries. This conclusion, which derives
from the solution of the wave equation, can be most satisfactorily interpreted by calling on the concept
of ray/mode duality. The question of the connection between rays and modes in the wedge is pursued
here at some length.

In general, the radiation field in a wedge-shaped domain formed by two perfectly reflecting bound-
aries consists of two components: the modal component is a consequence of the constraints imposed by
the boundary planes on the field, and the diffracted component arises from scattering at the apex of the
wedge. It is well known [1] that when the wedge angle is a submultiple of 7r, the diffracted component
is identically zero; and in certain special cases, even when the wedge angle is not a submultiple of 7r,
the diffracted component is again absent [2]. What is more significant, however, is that in the context
of ocean wedges, where the wedge angle is usually very small (typically a few degrees) and the ranges
of the source and the receiver from the apex are generally many wavelengths long, the diffracted com-
ponent, if not absent, is negligibly small. This being so, it is ignored in the following discussion, which
is devoted to the modal component of the field.

An approximate solution for the modal part of the field in a perfect wedge has been derived by
Bradley and Hudimac [3] and examined by Graves et al. [4]. Unfortunately, its range of validity is
extremely limited. In particular, it is unsatisfactory throughout a large proportion of the modal beams
alluded to above, in just the regions which are of interest in many applications. The failure of Bradley
and Hudimac's solution in these regions could, perhaps, have been anticipated, since it does not show
the required form around the source point. One of the main results in the present report is a new solu-
tion for the field in the wedge, which has a much more extensive range of validity than that of Bradley
and Hudimac, and which behaves correctly in the immediate vicinity of the source.

THE FIELD DUE TO A POINT SOURCE IN THE WEDGE

The geometry for the wedge problem is shown in Fig. 1, where S and R represent a point source
and a point receiver, respectively. Since we are interested in the three-dimensional field in the wedge,
S and R are not necessarily in the same vertical plane running perpendicular to the apex of the wedge.
The angle of the wedge is 00. A cylindrical coordinate system is used for the problem, with the z axis
running down the apex of the wedge and the angular coordinate 0 measured from the surface. Thus
the boundary planes are at 0 = 0 and 0 = 00. The coordinates of the receiver are (r, 0,z) and those of
the source, which for convenience is located in the z = 0 plane, are the primed quantities (r' 0', 0).

Manuscript approved November 22, 1983.
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APEX IS THE SHORE LINE

S E A~SE SURFACcS

(r' 0'. 0) 

R --- -- f S - source
or' 1 R -receiver

SEA BOTTOM

Fig. I - Cylindrical coordinate system for the wedge problem

The equation that must be solved for the field in the wedge is the inhomogeneous Helmholtz
equation:

V'2, + k20 = a 8(r - r') - 0')8(z), (1)
r

where Q is the source strength, 8( ) is the Dirac delta function, and k is the wavenumber (i.e.,
k = w/c, where Xo is the angular frequency and c is the speed of sound in the medium, which is
assumed to be independent of position). The function 0 in Eq. (1) is the velocity potential excluding
the time-dependent factor in the case of an harmonic source, or it is the Fourier transform (with
respect to time) of the velocity potential for an impulsive source. On expressing the Laplacian operator
in cylindrical coordinates, Eq. (1) becomes

1 0 (r~ + 1 820 +i20+k8(r-r') 0-')8(z). (2)
r Or Or j r2 00 0z 2 r

Equation (2) is separable for the perfect wedge, and it can be solved for 0 in several ways. The
method used here is to apply a sequence of integral transforms to both sides, and subsequently to apply
the inverse transforms to arrive at the solution. Assuming pressure-release boundaries, the first of
these transforms is the finite Fourier sine transform:

0, = foo 0 0 (0) sin v Ode, (3a)

whose inverse is

qs(0) = 2 0,(v) sin v 0. (3b)

In these expressions, v = m7r/00 , where m is a positive integer, and the symbol 1" means a sum over
all possible values of m. It is clear from the structure of Eq. (3b) that the final solution for the field
will be a sum of normal modes, and that m is the mode number. Note also that this formulation
ensures that the pressure-release boundary conditions are satisfied. On taking the sine transform of Eq.
(2), we obtain

1 a r kS 0k + +2k' qS 00 Q (r -r') Wsiv '(4
r Or I Or r2 S ? +Q 8(r-rin0( (

The next transform to apply is the generalized Hankel transform of order v = m7r/0o, which we
shall assume to be an integer. This is tantamount to saying that 00 is a submultiple of 7r, so that the
field due to diffraction at the apex of the wedge is zero. The Hankel transform is defined as
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Hv, (,,)-, =f r 0(r) Jv(pr)dr, (5a)
and the inverse transform is

4k5(r) = j p Xv (p)J,(pr)dp. (5b)

An important property of the Hankel transform is that it acts on the quantity A'&b5 as follows [5]:

H^(Avc/5 ) =-p2'H(j), (6a)
where A,, is the differential operator

Jr a |Ir a~t |t a~t| - v2 |. (6b)

Thus, when Eq. (4) is Hankel transformed we find that

' + (k2 - p2 ) O^, =-Q sin v 0' J,,(pr')8(z). (7)
6Z 2

The final transformation to apply is the Laplace transform, defined as

0I"vS = jof CW(z) exp (-qz)dz, (8)

where the unilateral form has been chosen because the field must be symmetrical in z On applying this
integral transformation to Eq. (7), we find that

qo,s(0) - Q sin v 0'(J,,(pr')
2 (9)

(q2 + k2 - p2 )

where 0,s (0) is the value of 0,,s at z = 0. Now, the inverse Laplace transform of Eq. (9) is easily
shown to be

Ovs= C0 cos 7iIzI - 2 sin v0' J,,(Pr') sin l2iz I (10)
2

where

= .. /T (11)
From the radiation condition, that is, the requirement that the field should go to zero when Iz I -o
for p > k, we find that

0,A(°) = j Q sin v O' J (Pr) (12)

and hence

s = j Q/2 sin v 0' J (Pr') exp (i qIz D) (13)

The next inversion integral to apply is the inverse Hankel transform defined in Eq. (5b). Using
the expression in Eq. (13), this gives

.Q= , r p exp (jQqIzI)J,(pr)J,,(pr')ck5 = ij 2~ sin v O J0 dp. (14)

Finally, we obtain the solution for the field in the wedge by taking the inverse sine transform of O5
defined in Eq. (3b):

+ = Q I, (r,r',z) sin v 0 sin v 0'. (15)ov
3
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This is a sum of normal modes whose coefficients are given by the integral

I,(rr',z) = . exp (binIzl) J,(pr)J.(pr) dp. (16)(r~~~~r',z) fJ,(p)J,(p')dp

Note that the solution as it stands in Eq. (15) is exact, since no approximations have yet been intro-
duced. It is only in evaluating I, that some accuracy will be sacrificed.

THE NORMAL MODE INTEGRAL

To evaluate the integral in Eq. (16), it is convenient to convert it to another form using the
Bessel function identity [61

J, (pr)J, (pr') = f 0r Jo(P Irr2 + r' 2 -2rr' cos o-) cos v a- do-, (17)

which is valid for v an integer. When this expression is substituted into Eq. (16), we obtain the double
integral

Iv = l-f cos v fr exp (flzI) JO(p /r2 + r'2 - 2rr' cos o-) dpdo-. (18)

Now, the inner integral here is the field due to a point source in an infinite medium [7], and hence I,,
can be written as

1,,= -'---f" osr exp[-jkRo(I - 2a cos (7)1/2] (19)

C Ro. v ) 2 do,(1- 2a cos or)112 do-,

where

R= (r2 + r?2 + Z2)1/2 , a = rr- K 1/2. (20)

From the definitions in Eq. (20), it is clear that a takes its maximum value, equal to 1/2, when r = r'
and z = 0. As the source and receiver separate in the r - z plane, a falls in value, approaching zero in
the limit.

The form of the integral in Eq. (19) is more amenable to evaluation by approximation techniques
than is the form in Eq. (16). An evaluation procedure is described in Appendix A which leads to the
result

= x1 exp exp {-jkR 1(1 + bl)]H>(2) (kRIb1 )
2 I2 [
+exp {-jkR 2(1 -b2)1I42) (kR2b2) (21a)

which is valid provided the condition

kRoa >> 1 (21b)

is satisfied. In the expression for I, in Eq. (21a), H,(J) ( ) and H 2) (2) are Hankel functions of order v
of the first and second kind, respectively, and the parameters R. and bi, i = 1, 2 are defined as follows:

RI = RO(1 - 2a)1/ 2, R 2 = Ro(1 + 2a)1/2, bl= a b2= a (22)

Notice that, apart from v, the formulation of I, given above depends on only two independent vari-
ables, namely kR 0 and a. Equations (15) and (21) specify the modal field in the wedge.
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In the context of ocean wedges, where the wedge angle is usually substantially less than 100, the
inequality in Eq. (21b) does not represent a serious practical restriction on the validity of the solution
for I, As we shall demonstrate, each mode in the wedge takes the form of a beam of radiation which
diverges as the range from the apex increases. Within, and to some extent beyond, a modal beam, the
condition in Eq. (21b) is always satisfied. It is only deep within those regions which are not illuminated
by the source, that is to say, the acoustic shadow zones, that, Eq. (21b) may not hold, but this is not a
significant limitation because the field in these regions is essentially zero anyway. We conclude, there-
fore, that Eq. (21a) is a valid description of the modes for most scenarios appropriate to the ocean
wedge.

It is worth noting in particular that Eq. (21a) is a valid representation of the field in the immediate
vicinity of the source point (assuming that the source is many wavelengths from the apex so that equa-
tion (21b) is satisfied). Under these circumstances it can be shown that the mode sum for the field in
the wedge reduces to the free-field expression for a point source (see Appendix B). This is exactly the
form of limiting behavior that is required of the solution.

It is interesting to examine Eq. (21a) in another limit, in this case as a - 0, corresponding to a
large separation between the source and the receiver in the r - z plane. In this limit, we have
RI = R2 = RO and b, = b2 = a, which, when substituted into Eq. (21a) give

lim Iv = exp lit ^2 | exp -(jkR 0 )J,,(kR 0 a), (23)

where the sum of the two Hankel functions has been expressed as a Bessel function of the first kind.
This expression is the solution for the modal coefficients that was obtained by Bradley and Hudimac [3].
Naturally, its range of validity is considerably less than that of the solution in Eq. (21a), since the addi-
tional constraint a = 0 has now to be satisfied. This condition means that Eq. (23) is not a valid
representation of the field in the vicinity of the source, as exemplified by the fact that it does not show
the required singularity at the source point.

The implications of the condition a = 0 are well illustrated by an example. If we assume that a
K 0.1, and that the source and the receiver are in the same vertical plane perpendicular to the apex so
that z = 0, then a simple calculation shows that Eq. (23) is valid only when r < r'/10 or when
r > lOr'. Taking the range of the source from the apex as 1 km, say, this means that Eq. (23) is
invalid for all receiver ranges (measured from the apex) between 100 m and 10 km. It is unfortunate,
in view of the relative simplicity of Eq. (23), that this is precisely the range that is likely to be of
interest in practical situations.

An impression of the relative accuracies of Eqs. (21a) and (23) is conveyed by Table 1, which
shows the real part, the imaginary part, and the modulus of the quantity irRoI, for various values of a
and kRO, but chosen so that the product kROa = 100. For comparison, a numerically computed
evaluation of the integral in Eq. (19) is included in the table. The agreement between Eq. (21a) and
the computed values is apparent. Equation (23), on the other hand, performs poorly, especially with
regard to phase. This is true even when a takes the relatively low value of 0.1 used in the example
cited above. An improvement occurs only when a is substantially less than 0.1, confirming that Eq.
(23) has an extremely limited range of validity.

THE EIGENFUNCTIONS FOR THE WEDGE

The trigonometric functions in Eq. (15) contain the entire angular dependence of the modes in
the perfect wedge. These oscillatory functions are analogous to the eigenfunctions obtained for a
shallow-water channel with pressure-release boundaries. In the shallow water case, the variable is the
depth of the sensor or the source, normalized to the channel depth, whereas in the wedge it is the
angular depth normalized to the wedge angle.

5
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Table 1 - The Modal Coefficients for v = 18 (corresponding
to the first mode in a 10° wedge)

aNumerical evaluation of the integral in Eq. (17).

bEvaluation of the new analytical solution in Eq. (21a).

CEvaluation of Bradley and Hudimac's solution in Eq. (23).

The function sin (mir0/0o) is plotted for the first three modes, corresponding to m = 1, 2, 3, in
Fig. 2. Note that each mode is zero on the boundaries, and that the mth mode exhibits m extrema.

TOTAL NUMBER OF MODES IN THE FIELD

The integral for I, in Eq. (19) is essentially zero when v exceeds a certain value. This can be
appreciated by allowing v to become indefinitely large, in which case the trigonometric function oscil-
lates far more rapidly than the rest of the integrand. If the slowly varying part, that is, everything
except the cosine, is treated as a constant and taken outside the integral, then the integral of the cosine
function is identically zero (bearing in mind that v = m7r/0o, and we are assuming that 0H is a submulti-
ple of 7r). The implication of this is that only a finite number Mof modes contributes significantly to
the field at any point in the wedge.

To estimate M, we set

(24)/L(o-) = kRo(l - 2a cos o-)l/2
and employ the condition that the integral in Eq. (19) takes appreciable values only when

v. m < do |
so da Imax'

SURFACE BO

B OTTO M 

3 2 1=m

Fig. 2 - The first three mode shapes in the wedge. All
show zeros on the (pressure-release) boundaries.

6

(25)

a _ k e(7rRoI) Jm(n7RolR ) Ro jiI,
0.225 0.085 0.241

l0-4 106 0.225 0.085 0.241
0.226 0.084 0.241

-0.118 -0.131 0.176
0.1 103 -0.119 -0.132 0.178

0.136 -0.199 0.241
-0.192 -0.042 0.197

0.2 500 -0.193 -0.042 0.198
-0.213 -0.113 0.241
-0.025 0.244 0.245

0.4 250 -0.025 0.245 0.246
0.058 0.234 0.241

-0.413 -0.400 0.574
0.4975 201 -0.403 -0.409 0.574

0.241 0.015 0,241
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I--
where (dl/do-) max is the maximum 'frequency' of the exponential term in the integrand. A simple
calculation shows that

dA | R = _ -(1- 4a2 ) 12 )1/2. (26)

do max

Thus, the maximum value of m from Eq. (25) is

M = E | {l° 1 -(1- 40 1/211/2 (27)

where the symbol E[ I denotes "integer part of."

It is apparent from Eq. (27) that M, the total number of propagating modes at the receiver,
depends on the positions of the source and the receiver. There are two cases in particular which are
worth noting.

Case 1. Source and receiver coincident in r - z plane (a = 1/2

In this configuration, we have r = r' and z = 0, giving Ro = X- r', and from Eq. (27)

M = E kro°l. (28)

Thus the total number of modes in this case is governed by the water depth r'00 at the source.

Case 2. Source and receiver well separated in range and/or z (a - 0)

In this case, the right-hand side of Eq. (26) becomes equal to kRoa, and the expression in Eq.
(27) for Mreduces to

M = E I kRO0oal = E + r 2 + z2 ) 2 | (29)

In certain specific situations, this may be simplified further, as follows:

M= E |ko| when r' >> r, z = 0, (30a)
or

M= E f o] when r >> r', z =0, (30b)
IT

and

M = E [r1 I I when I z I >> r and I z I >> r'. (30c)

Equations (30a) and (30b) correspond to the receiver being upslope and downslope of the source,
respectively. In both cases, the total number of modes is governed by the water depth (r00 or r'00) at
the shallower location. Moreover, Eqs. (30a) and (30b) are the same results that would have been
obtained from shallow water theory, had we assumed that the bottom was locally flat at r and r', respec-
tively. (A similar statement applies to Eq. (28)).

7
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SPATIAL PROPERTIES OF THE MODES

As the solution for the acoustic field has the angular dependence separated out, the behavior of
the modes in the range and z directions can be discussed independently of their angular properties. To
examine this behavior, we should strictly employ the expression for I, in Eq. (21a). (In certain appli-
cations, for example in determining the response of an array of sensors in a wedge-shaped channel
where phase is of critical importance, this would be essential.) However, we are interested here only in
establishing the broad features of the field, and for this purpose the simpler expression in Eq. (23) is
adequate. In particular we shall focus attention on the Bessel function J,(kRoa), since this contains
most of the interesting properties of the field; the exponential functions merely influence the phase of
the field, and Ro in the denominator is only a spreading term.

Range-Dependence of the Modes (z = 0)

We begin by considering upslope propagation, with the source much further from the apex of the
wedge than the receiver (i.e., r' >> r), and with the source and the receiver in the same vertical plane
perpendicular to the apex (i.e., z = 0). Under these conditions, the Bessel function in Eq. (23) can be
expressed simply as Jv(kr). This function is plotted in Fig. 3 for v = 18, 36, and 54, corresponding to
the first three modes in a 100 wedge. The vertical arrows are at the mode cutoff points calculated from
shallow water theory. The curves are highly oscillatory beyond some cutoff value of kr, which increases
with the mode number. Below cutoff (i.e., for smaller values of kr) the modal field falls rapidly to zero
and remains there right up to the apex. Immediately above cutoff, the mode envelope is a maximum,
and it decays approximately as (kr)' 1

1
2 as kr rises.

APEX
2

~ _TO THE
.0 V V V V V V V V VTVV SOURCE

-0.2L

J~~~( kr ~ ~ ~ ~ ~-l -\ __TO THE

0 v v v v v v SOURCE
-0.2 DOWNSLOPE

0.2 TO DEEP WATER m = 3

J54(kr),l TO THE

2 SOURCE

-0.2

Fig. 3 - The mode amplitude function J,(kr) for v = 18, 36, and 54

By examining the series expansion

Jx)-(x/2)v 1 (x/2)2 (1
= ! I '(v + 1) I

for the Bessel function of integer order v, it can easily be seen from the term outside the square brack-
ets that, for large v, JW(x) drops extremely rapidly to zero when the argument x falls below the order

8
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v. Taking equality between x and v as the condition for the onset of this behavior (i.e., when
x < v, J.(x) = 0), we can define for the m th mode the cutoff range from the apex, rtm, as

krtm = mar/00. (32)

This result is equivalent to that in Eq. (30a), derived from considerations of the mode integral.

The vertical arrows in Fig. 3 indicate the cutoff points for the three modes, calculated from Eq.
(32). If rCm 00 is equated with the water depth at the cutoff range, then Eq. (32) is the same as that
obtained from shallow water theory for mode cutoff. The obvious physical interpretation of this is that
if the wedge is regarded as being locally uniform in depth, then at ranges less than rCm the channel is
not sufficiently deep to support the m th mode.

A qualitative interpretation of the curves in Fig. 3 can be given in terms of rays (Fig. 4). A ray
travelling upslope undergoes numerous reflections from the boundary planes, increasing its grazing
angle on successive bounces from either one of the planes by twice the wedge angle. Eventually, as the
apex is approached, the grazing angle becomes so large that the ray is turned around and proceeds to
propagate back downslope. In the vicinity of the turnaround point, which corresponds closely to the
mode cutoff range given by Eq. (32), the density of rays is high, which is consistent with the relatively
high level of the modal envelope immediately above cutoff.

~~~~~~~~~~~~~~0
0 _ ~ ~ ~~~ TURN-AROUND

POINT

Fig. 4 - A ray propagating upslope is eventually turned around
and then propagates back downslope

Z-Dependence of the Modes

The argument of the mode amplitude function J.(kRoa) depends on z (the separation of the
source and receiver in the direction parallel to the apex) through the term Ro (see definition in Eq.
(20)). We now examine this z-dependence downslope of the source with the ranges of the source and
the receiver held fixed. Fig. 5 shows the function

ktr'
J181 r + r|2 + z2)12

corresponding to the first mode in a 100 wedge, plotted as a function of z, assuming that r > > r'. Note
that when IzI exceeds a certain critical value the field falls to zero, and where it is nonzero it is highly
oscillatory suggesting strong interference. The envelope of the oscillatory function, derived from the
asymptotic expansion of the Bessel function, is shown as the broken line, with the cutoff points in IZI
determined as in Eq. (32), by equating the argument with the index. The resemblance of this outline
to a butterfly with spread wings is apparent, which suggests the term "modal butterfly." The wingspan is
clearly dependent on the mode number, as illustrated in Fig. 6 for the first four modal butterflies of a
100 wedge. As the mode number increases, it is evident that the width of the nonzero field region in
the .z-direction becomes narrower, eventually cutting off altogether above some value of m depending
on the local conditions. The criterion governing the number of propagation modes at any given point
has already been established and is given in Eq. (27).

The significance of the modal butterflies becomes apparent when the wingspan is examined as a
function of range. This is shown for the first mode in Fig. 7. The radiation field diverges from the

9
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Fig. 5 - z-dependence of the first mode at a fixed range 5 km downslope of the
source, which is located in the z = 0 plane (00 = 10 
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Fig. 6 - The first four modal butterflies at a fixed
range 5 km downslope of the source, which is located
in the z - 0 plane (0o = 100)

10 20 30

z, km-

-50APEX -
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source to illuminate a fan-like region beyond which there is essentially no energy, and acoustic shadow
zones are formed. Thus, the interaction of the radiation with the boundaries creates a beaming effect.
In practical situations this could be important since regions of the ocean are not being ensonified. Fig-
ure 8 shows the same phenomenon for the first four modes, and clearly illustrates the nested structure
of the modal beams-as the mode number rises, the width of the beam decreases, which is consistent
with the argument given above for the behavior of the wingspan with mode number.

A similar situation is encountered with the field upslope of the source, except that in this case the
field converges as the receiver recedes from the source (i.e., as the shoreline is approached). This is
illustrated in Fig. 9 for the first mode. The beam shape is hyperbolic [81, as is easily confirmed from
the mode amplitude Bessel function. The beams corresponding to the higher order modes again fall
within those of the lower order modes, although this is not shown in Fig. 9. As before, outside a given
beam there is essentially no energy in the field associated with that particular mode. Thus, the max-
imum extent of the ensonified region in the Iz I direction is determined by the lowest order mode in the
field.

-50
APEX - r-

Im

m =

0
z, km -

50
0

5

RANGE,
km

10
= m

Fig. 8 - The first four modal beams,
showing their nested structure
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250
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Fig. 9 - The field and shadow zones of the first mode upslope of the source.
The boundary curve is a hyperbola (lo = 100).
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RAY/MODE DUALITY

Each mode in the wedge is a superposition of two components, represented by the two terms con-
taining the Hankel functions in Eq. (21a). When the arguments of these functions are very much
greater than the order I>, the Hankel functions themselves may be approximated by their asymptotic
forms. The range dependence of the two modal field terms is then given by the oscillatory functions
exp (-jkR,) and exp (-jkR 2 ), where from the definitions in Eqs. (20) and (22), we see that

RI = [(r - t')2 + z]1I2, R 2 = [(r + r')2 + Z2]1/2. (33)

These expressions show that, in the (rz) plane, RI is the range from the source to the receiver, and
R2 is the range from an image source at (-r',O) to the receiver. Thus, in the asymptotic region the
two exponential functions are representative of two sets of waves, one of which is produced by the
source and the other of which is associated with the image.

The appearance of the two field components in the modal solution can be understood by examin-
ing a ray path in the wedge, or more precisely, the horizontal projection of a ray onto the sea surface as
it bounces between the surface and the bottom. Weston [91 has discussed this device and has shown
from geometrical arguments that the shape of the horizontally projected ray path is a hyperbola (Fig.
10). That is, the repeated acoustic interactions with the inclined planes forming the wedge introduce a
curvature into the horizontal direction of travel of the ray and eventually lead to a turning point as the
shoreline is approached. (Weston refers to this phenomenon as horizontal refraction.) If the asymp-
tote associated with the branch of the hyperbola remote from the source is extended beyond the apex,
it passes through the image source at (-r',O).

Z _ APEX OF

WEDGE
ASYMPTOTE ,

RANGE |

DEEP WATER

I

Fig. 10 - Horizontal projection of a ray path in the wedge

There are many possible hyperbolic ray paths between a source and a receiver in the wedge. Most
of these do not show constructive interference and hence do not correspond to a mode. The criterion
for a ray to correspond to the m th mode is that the grazing angle of the ray at the vertex of its hyperbolic
path must be the same as that of the ray corresponding to the mth mode in shallow water whose depth is equal

12
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to the depth at the vertex. Weston [9] has shown that the angle between the asymptotes of a hyperbolic
ray path and the shoreline is the same as the grazing angle at the vertex. It follows that the criterion
given above for a ray to correspond to a mode fixes the directions of the arms of the modal hyperbola.
This is an important factor in interpreting the modal beams and shadow zones in the wedge.

The quantity

T -dh sin dh, (34a)

where h is the water depth and a is the grazing angle, is a ray invariant [10]. For isovelocity water
(which is our case), a and c are independent of depth, and so

T= h sina (34b)
C

Thus, in the wedge the quantity in Eq. (34b) is a constant along the hyperbolic ray path. But the condi-
tion for a ray to correspond to a mode in a shallow water channel with pressure-release boundaries is

h sin a = -i- = const. (35)

On comparing these two expressions, it can be deduced that in the wedge a hyperbolic ray correspond-
ing to a mode behaves as though it were a mode in locally shallow water all along its track. That is, at
each point along the hyperbolic path, the upward and downward traveling wavefronts obey the same
conditions for constructive interference as if the channel were locally uniform in depth.

For a fixed source/receiver configuration in the wedge, there are only two possible modal rays
corresponding to the m th mode. They are illustrated in Fig. 11. (The parameters of these hyperbolae
are easily expressed in terms of r, r', z, m, and 0 0 from a geometrical argument, as detailed in Appen-
dix C). One is a direct ray from the source and the other is an indirect ray, which has been turned
around on approaching the apex, as shown in the figure. When the receiver is in the asymptotic
regions of these two hyperbolic ray paths, the direct and indirect rays correspond to the field terms
from the source and its image, respectively, in the modal solution (Eq. (21a)).

Sow

__- APEX OF
WEDGE

RANGE | '*/ INDIRECT
, RAY/MODE

DIRECT \ 
RAY/IMIOID E \,\ 

|DEEPR

IWATE R

Fig. 11 -Horizontal projection of the direct and indirect ray paths
for fixed source and receiver positions
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We can now use the definition of a modal ray to interpret the beaming of radiation in the wedge,
as predicted by the modal solution. Figure 12 shows upslope propagation with the broken line
representing the edge of the beam associated with the first mode. That is, the broken line is the same
as the solid hyperbola in Fig. 9 obtained from the modal solution. The solid lines in Fig. 12 represent a
few of the first-mode rays, each of which is launched from the source at a different azimuthal angle.
Notice that the modal rays fall precisely within the beam. Whichever description of the field is used,
either modes or rays, the energy associated with a given mode falls in the same well-defined region,
beyond which are shadow zones. This beaming of the radiation can now be understood from the ray
argument to be due entirely to ray curvature arising from the repeated acoustic interactions with the
inclined surface and bottom planes. The curvature is such that no radiation showing constructive
interference characteristic of the m th mode can extend into the region beyond the beam associated
with the m th mode. Naturally, if a point receiver is placed anywhere within a modal beam, such as at
point A in Fig. 12, only two of the modal rays will be incident upon it, as indicated by the double-
headed arrows. The beam itself, of course, is comprised of many modal rays.

z, km-
-25 0 25

APEX- 0

DOWN- SHADOW X'\ SHADOW
SLOPE ZONE l ZONE

RAYS~' ' MODE
RAYS ;s \ \ ENVELOPE 250

RANGE,

500

'SOURCE

Fig. 12 - Upslope propagation showing the convergent first-mode envelope
and some first-mode rays

EXPERIMENTAL EVIDENCE

The beaming of radiation in the wedge that is predicted theoretically has been observed experi-
mentally. A. B. Wood [11], in one of his model tank experiments, examined the field in a wedge-
shaped domain. The tank he used was several feet long with a depth of six or so inches, and the wedge
was formed by a sheet of glass inclined at an appropriate angle to the water surface. To record the field
upslope of the source, he used a novel technique which is appealing in its simplicity. He first painted
the glass sheet with a water soluble paint (distemper), waited until it had dried but not hardened, and
then placed the sheet in the tank to form the wedge. He found that the sound field left an impression
in the paint.

Figure 13 shows the result of one of A. B. Wood's experiments. The photograph is deliberately
inverted in order to have the same orientation as the previous figures, with the apex of the wedge run-
ning horizontally along the top and the source located at the bottom. The interference pattern
displayed by the field is easily visible in the figure, but the most prominent feature is the convergent
beam running towards the apex. It is difficult to make a quantitative comparison between the observed
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Fig. 13 - Acoustic field observed by A. B. Wood
in a wedge-shaped domain [111*

beam shape and that predicted theoretically because not enough information is available on the experi-
mental arrangement. The overall features of the measured radiation field are, however, consistent with
the theory.

CONCLUDING REMARKS

The mode and ray descriptions of the acoustic field in a wedge with perfectly reflecting boundaries
are complementary. The modal solution gives a complete description of the field, including the phase,
and is thus appropriate to calculations of spatial coherence, array performance, and related topics. The
dual description, in terms of rays, gives a pictorial view of the field which provides a valuable intuitive
understanding of propagation phenomena in the wedge. The formation of shadow zones, for example,
has a simple physical interpretation in terms of modal rays.

A new solution for the field in the perfect wedge has been presented here which is valid
throughout the ensonified regions. It is possible to derive this solution because the Helmholtz equation
for the problem is separable. By way of contrast, the Helmholtz equation for the penetrable wedge is
not separable. This implies a degree of complexity beyond that encountered in the perfect wedge prob-
lem. Indeed, this is to be expected because when one boundary is penetrable there are critical angle
effects with which to contend, and even for those rays which undergo total internal reflection, there is a
phase change on reflection from the boundary. Despite these difficulties, it is possible to obtain an

*Journal of the Acoustic Society of America, 31 (1959), used by permission.
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approximate solution for the field in the penetrable wedge by using the perfect solution derived here in
conjunction with an argument which relies heavily on the duality between rays and modes. This will be
discussed in a future publication.
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Appendix A
EVALUATION OF THE NORMAL MODE INTEGRAL

The inversion integral giving the amplitudes of the normal modes (Eq. (19) in the text) is

4= I f COr co a exp I-]kR0 (I - 2a COS 0/)1/2I o,(l
; _R0 0o (1 - 2a cos o.)l/2 (Al)

where a and Ro are as defined in Eq. (20). Now, with

x = cos a', (A2)
we are interested in the function

p(x) _ (1- 2ax)1/ 2 = (1- 2axo)1/211 + ( - ) + |' (A3)

where the term on the right is the Taylor expansion of p (x) about x = x0. On splitting the range of
integration into two, and setting x0 1 in the first interval and x0 = -1 in the second (these values
correspond to the turning points in p (x)), the integral in Eq. (Al) can be expressed as

Iv = J ,,|<0 cos v C exp{-jkRI[1 + b(l -cos o-) + ... ]ldo-irRI 0 p

+ cos v a( exp{-jkR 2[1 - b2(0 + cos a) + ... Jldo-, (A4)
rR 2 41,r2

where

R = RO(1 - 2a)1/2 , R2 = RO(1 + 2a)1 /2 (A5a)

b, = a/(1 - 2a), b2 = a/(1 + 2a) (AWb)

and p (x) in the denominator has been approximated by the first term in the expansion in Eq. (A3).
The two components of Iv can now be written in the form

exp [-jkR1 (l + bl)] exp [-jkR 2(l - b2] 2, (A6)

where 7rRI 11+

I= ,2 cos v ar exp [ji(kRIb, cos or)Idcr (A7a)

and

1 /2= cos v C- exp 1j(kR 2 b2 cos )]do,. (A7b)

In these expressions, the terms beyond those shown in the expansions in Eq. (A4) have been
neglected. This is justified because the major contributions to the integrals in Eq. (A4) come from
around the turning points of p (x), where only those terms shown are significant.

With a little algebraic manipulation, the integrals in Eq. (A7) can be expressed as standard forms
which can be found in most tables of integrals (e.g., Ref. 12). For v an integer, the results are

'1 = 2 exprj Pr |JH(I) (kRIbI) (A8a)

and

I2 = 7r exp{j -r JH(2) (kR 2 b2 ), (A8b)
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which, when substituted into Eq. (A6) give I

I 1 ex r (exp [-jkR1(1 + bl)]H,() (kRjbj) + exp [-jkR2 (1 - b2)]H'(2) (kR2b2) | )
2 i2 n t t 

This is the result in Eq. (21a) in the text that we set out to prove.

18



Appendix B
THE FIELD IN THE VICINITY OF THE SOURCE

The field from a point source within a bounded domain shows a singularity at the source point,
and in the immediate vicinity of this point it has the same form as the free field of the source. Indeed,
this fact is often employed to construct solutions for boundary value problems: the field is represented
as a superposition of the free-field component and another component chosen to satisfy the boundary
conditions.

In the case of the wedge, the solution for the field in Eqs. (15) and (21a) has been derived by
using transform methods, rather than the superposition technique, but it should nevertheless be valid
in the immediate vicinity of the source point. That is, the modal sum in this region should reduce to
the free-field form. We show here that this is the case.

When the receiver is very close to the source, only the term containing the Hankel function of
the first kind in Eq. (21a) is significant. This Hankel function has a large argument (kR bj) and a large
order P. Bearing in mind that at the source point there is a finite number of propagating modes (see
Eq. (28) in the text), it is always possible to choose kR~b1 > v. (kR~bI increases as the source point
is approached). On setting

kR I b1 - v sec 3, (BI)

the Hankel function of the first kind can be expressed approximately (see Ref. BO) as

II,2~(k~t1 -HJ(') (v sec = ,7 exp {I [v (tan b - 83) - 4::~J (B2)

From the definition of 6 in Eq. (B 1), we have

tan A -13= -2r/2 + kR, b1 _____B

v 2kR~bI .. (3

Assuming that v/(kRIb1 ) «< 1 for all v, so that the series may be truncated as shown, this gives

H,()(kR~b1 ) - /I-~7 exp i-i - kR1bI - 2B4Hit) Vf; _ I I 12 2kRb+

Thus the expression for I, in Eq. (21a) can be approximated as

I,= (2,,kRjb,)-'1 2 exp (-jkcR,) exp (-j ~ir/4) exp (2k~,J (BS5)

When this substituted into Eq. (15), the expression for the field becomes

Q (2,rkR~blO-112 exp (-IkR,) exp (-j .7-/4) sin P 0 sin v 0' exp B

= O R1 ('_2k ib, I' B

To evaluate the summation in Eq. (h6), we first employ the trigonometric identity

sin v 0 sin v o' = 1/2 [cos vt(0 - 0') - cos vt(0 + 0')], (or7)
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but retain only the difference term, since the remaining term makes a negligible contribution to the
field when 0 - 0'. The sum in Eq. (B6) can therefore be written in the form

S= 2 2 cos v(0 - 0') exp (B8)

By expressing the cosine function as the sum of two exponentials, this sum can be written as

S I (S+ + SA), (B9)

where
M 22+

So= - exp I±-%o-( 2,DL (BlO)

Here we have substituted v = m7r/Oo, and the upper limit on the summation is given by Eq. (28).
Now, provided the maximum value of the term containing m2 in the argument of the exponential func-
tion in Eq. (B10) is greater than unity, So may be approximated by the following integral:

S+=S = S - f0 exp I Y2 + 2ŽWJ4v, (Bll)

where

U = T , 2w = 'r ( - 0'). (B12)
u 22kRIbj 0o

The integral in Eq. (Bl) is a standard form [B2] which can be expressed exactly in terms of Fresnel
integrals. However, in the limit as 0 -0' (which is our case) the contribution from the Fresnel
integrals falls to zero, and we find that

2S = S+ = S_ = J exp |J-u exp (Q 7r/4). (B13)

When this expression for S is substituted into Eq. (B6), in place of the summation, the field in the
vicinity of the source is found to be

Q exp (-jkR 1) exp fw21 (B14)

=4ir R' iu |
The argument of the second exponential function in this expression is now

- = kRjbj(0- 0) = kRibji{ - | - (2 20 1 (B15)

= kRjbj[1 - cos( - 0)],

where the approximation holds because we are specifically interested in the case where 0 - 0'. Now, if
R is the distance between the source and the receiver, then

R2= r2 + r'2 + z2- 2rr' cos (0 - 0') (B16)

= R2 + 2rr'[1 - cos (O - O')]

so that

r [1 - cos(O - 0')] = - R (R - R1)(R + R1) (B17)
R 2R, 2R

- (R -RI)
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where the approximation is valid because in the immediate vicinity of the source R = Ra. Since be
kRjbI= krr'IR, it follows from Eqs. (B15) and (B17) that

w = (R - RI), (B18)M
u

and hence the expression for the field in Eq. (B14) takes the form

Q exp (-jkR) (B19)
~4ir R B9

where the denominator has been written as R rather than RI. But the expression in Eq. (Bi9) is pre-
cisely the free-field produced by the source, which is what we set out to prove. Note that Bradley and
Hudimac's [B31 solution for the field in the wedge (Eq. (23)) does not reduce to the required form in
the vicinity of the source point.
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Appendix C
MODE/RAY HYPERBOLAE

The two hyperbolic ray paths associated with a particular mode are illustrated in Fig. Cl. The
parameters of the two curves are derived below.
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Fig. Cl - Horizontal projection of the direct and indirect ray paths
for fixed source and receiver positions

Let the point (r,z fall on one of the hyperbolae. The Eq. for the hyperbola can then be written
as

-2 ( - Z_ ) 2

rm bm =1,rm2 b
(Cl)

where rm, bm, and Zm are the parameters of the hyperbolae associated with the m th mode. These
parameters take dual values, corresponding to the two ray paths.

From shallow water theory, the grazing angle am of the m th mode at the turning point is given
by

mir _msin am =-= _
krmOo rm

(C2)

where rm0o is just the depth at the vertex of the hyperbola, and qm = m7ri(k0o). Now, the angle
between the apex of the wedge and the asymptotes of the hyperbola is also equal to am [CI], and hence
we have
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tan am = --
bm 

It follows from Eqs. (C2) and (C3) that

(C3)

r-

rr
(C4)bmi=n (m m

We now require two more conditions to determine the three parameters of the hyperbola. They are
that the curve must pass through the source point (r', 0) and the receiver point (rz) (both rotated onto
the surface). These conditions lead to the equations

(C5)
r Q Zm;
r, - - =1Irmbm

and

r2 (Z - Zm)2

On eliminating zm from these equations, we find that

(C6)

Assuming that

z = [(r2 - rm)1/2 (r2 - rm)1/2(r,2 -q2)1q

r2 » r,1, r 2 >> rm and r • r', then Eq. (C7) may be easily solved to give

rm = qm I + ( :r)2 1.

Simple algebra shows that the remaining two parameters are given by the expressions

| ± 2 - +(r +rl (r + r')
and

bm = |1 + ri 1) (r ± r')

(C7)

(C8)

(C9)

(C1O)

Where there is a choice of sign in Eqs. (C8) to (C10), which are the results we require, the plus sign
relates to the indirect ray path and the minus sign to the direct ray path.
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